
A Linear Regression Model of TensorFlow Based on Python Language

Fukɑnɡ Ninɡ
Zhengzhou University of Industry Technology, Department of Information Engineering, Zhengzhou, China

Houyanyang521@sina.com

Keywords: In-depth learning; TensorFlow; Linear regression; Python

Abstract: In-depth learning has become a hot research topic in recent years. Among many in-depth
learning research tools, TensorFlow is one of the most popular and commonly used systems. This
paper introduces TensorFlow and gives a case of linear regression, which is implemented in Python
language. As a result, it can both help the entry-level learners of TensorFlow and benefit in-depth
learners.

1. Introduction
In this era of artificial intelligence, as an aspiring programmer, or student, enthusiast, if you not

understand in-depth learning this super-hot topic, it seems to have been out of touch with the
times[1]. At present, in-depth learning has become a prominent topic in the field of artificial
intelligence. It is well-known for its outstanding performance in "natural language processing",
"man-machine game" and "speech recognition", even beyond the reach of human beings. Today's
attention to in-depth learning is also on the rise. Among many in-depth learning systems,
TensorFlow is one of the most popular learning systems[2]. This article introduces TensorFlow and
describes a case of linear regression and its Python implementation.

2. A Brief Introduction to TensorFlow
TensorFlow is an open-source machine learning framework launched by Google on Nov.9,2015.

It was developed by a team led by Jeff Dean and improved by the first generation of Deep Learning
System Disbilief. But for large-scale neural network training to require more deployment space,
DistBilief has been unable. TensorFlow allows users to assign and parallel execution of a core
model data flow graph to easily achieve a variety of parallelism. It can be cooperated with many
different computing devices to update a set of shared parameters or other states. So a lot of users
have turned to TensorFlow. These users rely on TensorFlow for research and production, with a
variety of tasks, such as reasoning about running a computer vision model on a mobile phone, and
extensive training of deep neural networks using hundreds of examples of log-100 billion
parameters. TensorFlow has become the most popular open source machine learning framework in
the world. It supports C ++ and Python. It is fast, flexible and suitable for large-scale applications at
product level. It also supports multiple systems. The main support systems are Linux, Mac OS X,
Windows, etc. TensorFlow makes it easy for every developer and researcher to use artificial
intelligence to address the challenges of diversity[3].

3. Linear regression
In neural networks, the final layer of a classification network usually contains some form of

logical regression algorithm used to convert continuous data into virtual variables such as 0 and 1
(for example, in pilot selection, depending on the height of some students, Weight and health
determine whether they qualify. While the real-world regression algorithm is used to map a set of
consecutive inputs to another set of consecutive outputs[4]. A simple linear regression model
describing the relationship between two variables, x and y, can represent with the following
equation y = a + bx + e. The numbers a and b are called parameters and e is an error term. In order

2019 2nd International Conference on Intelligent Systems Research and Mechatronics Engineering (ISRME 2019)

Copyright © (2019) Francis Academic Press, UK DOI: 10.25236/isrme.2019.031174

to simplify the model in this discussion, the linear model is designed as follows, assuming that the
input y and xi of a model satisfy the relationship, and the output of the model is the weighted sum
of the input[5].

i
y wi b= +∑ The training of one-dimensional linear regression model is carried out

by TensorFlow. The values of w and b in the linear regression function (y = w * x + b) are deduced
by training data[6].

4. The Realization of Python
(1) The introduction of module
The introduction of modules into the Python implementation is an important concept in Python,

whose programs are made up of modules. Before using a function or class of a module, first import
the module .First, we introduce the TensorFlow module. In order to understand the training results
clearly, we introduce the drawing table and the test data module code (the internal code of this
module is abbreviated).

Import tensorflow as tf matplotlib.pyplot as pyp testdata as td.
(2) Get training data
Get training data to simulate third-party interfaces through testData, getTrainData gets training

data parameters: dataLength (the number of data obtained), return values: two-dimensional array [0]
represents x (horizontal coordinates), [1] represents y (longitudinal coordinates), and
getValidateData gets validation data parameters: The number of data that dataLength gets.

trainData = td.getTrainDate(200)
practice_x =[v[0] for v in trainData]
practice_y =[v[1] for v in trainData]
(3) Constructing the predictive linear regression function y=W*x+b
W = tf.Variable(tf.random_uniform([1]))
b = tf.Variable(tf.zeros ([1]))
y = W * practice_x + b
(4) To judge whether the hypothetical function is good or not, we first construct the cost function

21cos || () ||
2

l

x
t y x a

n
= −∑ , in which we use the quadratic cost function, the cost represents the cost

function, x represents the sample, y represents the actual value, a represents the output value, and
the n represents the total number of samples. For the sake of simplicity, use a sample as an example

in line, this time two times the number of valence letters is.
2()cos

2
y at −

= .

cost = tf.reduce_mean(tf.square (y-practice_y))
(5) Parameter optimization.
Learning-rate can be understood as the step size for each gradient drop. The learning rate is

usually set to be less than 0.1. Here we set it to 0.08. When the learning rate is too high, it may
cause the parameters to oscillate back and forth near the lowest point and never reach the best.
When the learning rate is too small, the early gradient falls very slowly and wastes time. So the best
way is to set up a large pre-learning rate, let the gradient drop quickly, then slowly reduce the
learning rate, in order to achieve the best[7]. In-depth learning is common for gradient optimization,
which means that the optimizer is ultimately a variety of optimization for gradient descent
algorithms. In this program we have used the tf. GradientDespectOptimizer (learning _ rate)
function. In general, a minimization cost function is added at the end of the above function to form
a training object in-depth learning. The hypothesis function is adjusted in TensorFlow and the
gradient descent algorithm is used to find the optimal solution.

optimizer = tf.train.GradientDescentOptimizer(0.08)
train = optimizer.minimize(cost)
with tf.Session() as sessio: # Initialize all variable values

175

init = tf. global _ variables _ initializer ()
sessio.run(init) # initialize the values of W and b
print ("cost=", sessio.run (cost), "W=" session.run(W), "b=" , sessio.run (b)
for k in range (500): # Circulating running
sessio. run (train)

print ("cost = ", sessio. run (cost), "W =", sessio. run (W), "b = ", sessio. run (b), # output
W and b

print ("training completed")
pyp.plot (practice_x, practice_y, 'ro', label='train data')
Construct the graph structure
pyp.plot (practice_x, sessio.run(y), label='tain result')

pyp.legend ()
pyp.show ()

5. Program Running Interface Effect
The result of the program running is shown in Figure 1. Through the image display, the linear

regression simulation with TensorFlow is used to realize the parameter simulation of the linear
function. The evaluation of the linear function is used and the points with random error are
distributed uniformly around the straight line. It is very intuitive, as seen in Figure 1:

Figure 1 Effect Simulation Diagram

6. Conclusion
This paper first introduces TensorFlow, then gives the basic concept of linear regression and

realizes the model by using TensorFlow, which can be used to solve some related problems in
practical work. To master in-depth learning requires a strong theoretical basis, and to use
TensorFlow well requires enough practice and analysis. The program implemented with TensorFlow
can help the reader better understand and grasp the basic idea of TensorFlow and a model
implementation process. This article can bring a brand-new experience for entry-level readers.

176

References
[1] F. Casu,M. Manunta,P.S. Agram,R.E. Crippen. Big Remotely Sensed Data: tools, applications
and experiences [J]. Remote Sensing of Environment, 2017,202.
[2] Zheng Zeyu. TensorFlow Practice in Google In-depth Learning Framework. Beijing: Electronic
Industry Press,2017.
[3] Zhou Zongwei. A detailed explanation of Python development techniques. Beijing: Mechanical
Industry Press, 2009:67-75.
[4] Neural Network and Regression. Https://deeplearning4j.org/cn/linear-regression.
[5] Ming-Chiao Lin, HuiPing Tserng, Shih-Ping Ho, Der-Liang Young. Developing a
Construction-Duration Model Based on a Historical Dataset for Building Project [J]. Journal of
Civil Engineering and Management. 2011 (4).
[6] Jin Gui Chang, Han Wen Li. The Study on Key Factors Influencing Time Delay of Public
Construction Project[J] . Advanced Materials Research . 2014 (912).
[7] Paul Prinsloo,Elizabeth Archer,Glen Barnes,Yuraisha Chetty ,Dion van Zyl. Big(ger) Data as
Better Data in Open Distance Learning[J]. International Review of Research in Open and Distance
Learning, 2015,16(1).

177

https://deeplearning4j.org/cn/linear-regression

